要理解机器学习,最重要的一点是它代表了一种从根本上与以往不同的创建软件的方法:机器从示例中学习,而不是明确地为特定的结果编程。这是一个重大突破。在过去50年的大部分时间里,信息技术的进步和它的应用都集中在编纂现有的知识和程序,并将它们嵌入到机器中。实际上,术语“coding”表示将知识从开发人员的头脑中转移到机器能够理解和执行的形式的艰苦过程。这种方法有一个根本的问题:我们所有的知识都是隐性的,这意味着我们无法完全解释它。我们几乎不可能写出能让另一个人学会骑自行车或认出朋友脸的指令。
换句话说,我们知道的比我们能讲出来的东西要多。这个事实非常重要,它被称为:Polanyi悖论。Polanyi悖论不仅限制了我们能告诉别人的东西,而且对我们赋予机器智能的能力是一个根本性的限制。很长一段时间,这限制了机器在经济中能够有效发挥作用的活动。
机器学习正在克服这些限制。在第二个机器时代的第二次浪潮中,由人类制造的机器正在从例子中学习,并利用结构化的反馈来解决他们自己的问题,如Polanyi经典的识别人脸的问题。